LINEAR INTEGRATED CIRCUITS SOLUTION

(CBCGS SEM - 4 MAY 2019)

BRANCH - ELECTRONICS AND TELECOMMUNICATION

Q. 1 Attempt any 4 questions:

a) Give Ideal Characteristics of op-amp and give their practical values.

SOLUTION:

Various characteristics of an Ideal and practical op-amp are as follows

Sr.No.	Characteristics	Practical op-amp value	Ideal op-amp value
1	Input Resistance $\left(\mathrm{R}_{\mathrm{i}}\right)$	$2 \mathrm{M} \Omega$	Infinite
2	Output Resistance $\left(\mathrm{R}_{\mathrm{o}}\right)$	75Ω	0
3	Voltage gain $\left(\mathrm{A}_{\mathrm{V}}\right)$	2×10^{5}	Infinite
4	Bandwidth B.W.	1 MHz	Infinite
5	CMRR	90 dB	Infinite
6	Slew rate (S)	$0.5 \mathrm{~V} / \mu \mathrm{s}$	Infinite
7	Input offset voltage $\left(\mathrm{V}_{\text {ios }}\right)$	2 mV	0
8	PSRR	$150 \mu \mathrm{~V} / \mathrm{V}$	0
9	Input bias current $\left(\mathrm{I}_{\mathrm{B}}\right)$	50 nA	0
10	Input offset current $\left(l_{\text {lios }}\right)$	6 nA	0

b) Compare linear and switching voltage regulator.

SOLUTION:

Sr.No.	Parameter	Linear Regulator	Switching Regulator
1	Circuit Diagram		

OUR CENTERS :

3	Switching	No switching	Transistor acts as a switch
4	Complexity	Less	High
5	Efficiency	Low (40\%)	High (90\%)
6	Switching frequency	Very low	Very high (25kHz)
7	Switching losses	Zero	Very high
8	RFI/EMI	Absent	Very high
9	Component stress	High	Very high
10	Regulation	Excellent	Good
11	Cost	Lowest	Moderate
12	Size/Weight	Large/Bulky	Small/Light weight
13	Power capacity	handling	Low

c) Design a circuit for $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{1}+\mathrm{V}_{2}$ using single op-amp and few resistors.

SOLUTION:

The above circuit can be designed by using non-inverting summing amplifier.
If V_{1} and V_{2} are the input voltages the output of non-inverting summing amplifier is given as
$\mathrm{V}_{\mathrm{O}}=\mathrm{A}_{\mathrm{VF}} \times \frac{V_{1}+V_{2}}{2}$
So, to get desired output A_{VF} should be equal to 2 .
But, $\mathrm{A} \mathrm{F}=1+\frac{R_{F}}{R_{1}}$
Hence, for $R_{F}=R_{1}=R, A_{v F}=2$
Hence the circuit can be designed as follow

d) What are the advantages of switch capacitor filters?

SOLUTION:

1. The primary advantage of switched capacitor filters is that they can be easily implemented on an integrated circuit.
2. Performance similar to an analog RC op-amp based filter can be obtained using a switched capacitor topology, while avoiding the need for an ADC, DSP, and DAC on a chip.
3. Switched capacitor circuits use capacitors and switches to emulate the behavior of resistors. Additionally, the frequency response is determined by the ratio of the capacitors, so even low frequency filters can be easily realized on-chip.
4. The real benefit of switched capacitor filters is for IC implementations such that while the absolute value of capacitances and resistances have a poor tolerance, the matching between similar devices is very good. This makes it possible to implement relatively high precision analog filters on a chip.

In an integrated circuit, you would choose a switched capacitor filter for the following reasons:

- Minimizing chip area is a priority
- You will not be doing significant digital processing on the chip
- The output of the DSP would be an analog signal

e) Explain op-amp as Window detector.

SOLUTION:

1. Op-amp can be used as a window detector so as to detect whether the input voltage $\mathrm{V}_{\text {in }}$ lies within a specified range (between V_{H} and V_{L}). This range is referred as Window.
2. A window detector circuit can be obtained as follows using 2 op-amps and 2 transistors that operates as switch.

3. The outputs of 2 comparators are connected to the transistors and output voltage is collected from common collector terminal of the transistors.
4. If $\mathrm{V}_{\text {in }}$ is between the two reference voltages i.e. $\mathrm{V}_{\mathrm{L}}<\mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{H}}$ then the outputs of both the comparators will be low. So both the transistor will be in off state and hence output will be high else low.
5. Hence, the three output conditions are as follows
i. $\quad V_{0}=+V_{\text {cc }}$ for $V_{L}<V_{\text {in }}<V_{H}$
ii. $\quad V_{o}=V_{C E}$ (sat) for $V_{\text {in }}<V_{L}$
iii. $\quad V_{0}=V_{C E}$ (sat) for $V_{\text {in }}>V_{H}$

Hence, when the output is high (i.e. applied V_{cc} is obtained at output) if the input voltage is in the range else low.

Q.2.

a) With the help of a neat diagram and voltage transfer characteristics explain the working of an inverting Schmitt trigger. Derive the expression for its threshold levels.

SOLUTION:

1. The inverting Schmitt trigger is as shown below

2. The resistance divider formed by R_{1} and R_{2}, connected between the output and non-inverting terminal of the op-amp introduces the positive feedback.
3. The Schmitt trigger is basically an inverting comparator with positive or regenerative feedback introduced. Hence also known as regenerative comparator.
4. External input $\mathrm{V}_{\text {in }}$ is applied to the inverting input of the op-amp. The resistor Roм is called offset minimizing resistor and is equal to parallel combination of R_{1} and R_{2}.
5. The reference voltage is V_{1} developed across R_{2}. This reference voltage is not fixed but its sign and amplitude depends upon output voltage because,
$V_{1}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{o}$
6. The 2 different triggering/threshold voltages are defined for the Schmitt trigger as follows:

- Upper threshold voltage Vut
- Lower threshold voltage $\mathrm{V}_{\text {LT }}$

7. The output voltage will change its state every time input voltage cross threshold levels.
8. The upper threshold level is defined as value of $\mathrm{V}_{\text {in }}$ which forces a transition from $+\mathrm{V}_{\text {sat }}$ to $-\mathrm{V}_{\text {sat }}$ in output voltage.

Similarly the lower threshold value is defined as value of $\mathrm{V}_{\text {in }}$ which forces output voltage to change from $-\mathrm{V}_{\text {sat }}$ to $+\mathrm{V}_{\text {sat }}$ in output voltage.
9. Thus upper and lower threshold/trigger voltages can be given as
$\mathrm{V}_{\text {UT }}=\frac{R_{2}}{R_{1}+R_{2}} \times \mathrm{V}_{\text {sat }}$
$V_{\text {LT }}=\frac{R_{2}}{R_{1}+R_{2}} \times-\mathrm{V}_{\text {sat }}$
Thus the magnitude of upper and lower threshold voltage is same but has opposite sign hence also known as symmetrical Schmitt trigger.
10. Transfer characteristics of inverting Schmitt trigger is a shown

Such that when, $\mathrm{V}_{\text {in }}<\mathrm{V}_{\text {UT }}$ then $\mathrm{V}_{\mathrm{o}}=+\mathrm{V}_{\text {sat }}$

$$
V_{\text {in }}>V_{\text {LT }} \text { then } V_{0}=-V_{\text {sat }} \text {. }
$$

b) Draw a neat circuit diagram of Wien bridge oscillator using op-amp. Derive its frequency of oscillation. What are the values of R and C for frequency of oscillation to be 965 Hz ?

SOLUTION:

Working of Wien bridge oscillator

1. A Wien bridge oscillator with a non-inverting op-amp amplifier is as shown below

2. The Wein bridge has 4 arms. The arm AD which contains a series of combination of R and C, whereas arm $C D$ contains a parallel combination of R and C.

This value of R and C is used to decide the value of oscillator frequency such that
$\mathrm{f}=\frac{1}{2 \pi R}$
3. The resistors R_{F} and R_{1} are used to generate a reference voltage which remains constant independent of the frequency f.
4. The AC input voltage is applied between the points A and C of the bridge. When Wien bridge is used in oscillator circuit, the feedback voltage is applied between these points.
5. The AC output of the bridge is obtained between the points B and D which is connected as inputs of the non-inverting amplifier.
6. The value of feedback factor β depends upon the frequency. At oscillator frequency f_{o} the phase shift introduced is zero and thus value of feedback factor β is $1 / 3$.
7. According to Barkhausen criteria the phase shift around the loop should be zero and loop gain should be greater than 1.
i.e. $|A \beta| \geq 1$
substituting $\beta=1 / 3$, we get $A \geq 3$.
Therefore the gain of the amplifier should be greater than or equal to 3 .

OUR CENTERS :
8. Data: $f_{o}=965 \mathrm{~Hz}$

Let $\mathrm{C}=0.01 \mu \mathrm{~F}$
Since $\mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi R}$

$$
\mathrm{R}=\frac{1}{2 \pi f_{o} C}=\frac{1}{2 \times \pi \times 965 \times 0.01 \times 10^{-6}}=16.49 \mathrm{k} \Omega
$$

$$
\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=16.49 \mathrm{k} \Omega
$$

Q. 3.

a) Draw the circuit diagram of a square and triangular waveform generator using op-amp and explain its working with the help of waveforms.

SOLUTION:

A. Square wave generator:

A square wave generator using op-amp can be designed as follow

1. Let the voltage on the capacitor C is zero when power is applied to the circuit. Therefore initially the voltage at the inverting terminal is zero i.e. $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{c}}=0$.
2. Due to some output offset voltage present at output of op-amp, the voltage V_{1} at non-inverting terminal is non zero and will have a value that depends on the
output offset voltage and values of resistance R_{1} and R_{2}. Hence differential voltage V_{d} is equal to V_{1}.

Operation:

The operation of square wave generator can be divided in 2 parts:

1. Operation from 0 to t_{1} :

- The voltage V_{1} will start driving the op-amp output towards saturation. For example if V_{1} is positive initially then it will drive the comparator output to $+\mathrm{V}_{\text {sat }}$ if V_{d} is positive.
- With op-amp output equal to $+\mathrm{V}_{\text {sat }}$ the capacitor C starts charging through R and V_{c} starts increasing exponentially in the positive direction.
- The voltage V_{1} across R_{1} is given by

$$
\mathrm{V}_{1}=\frac{R_{1}}{R_{1}+R_{2}} \times \mathrm{V}_{\text {sat }}
$$

Hence $\mathrm{V}_{1}=\beta$. $\mathrm{V}_{\text {sat }} \quad$ where, $\beta=\frac{R_{1}}{R_{1}+R_{2}}$
2. Operation from t_{1} to t_{2}

- At $t=t_{1}$ the capacitor voltage V_{c} is equal to $\beta . V_{\text {sat. }}$. As soon as the voltage on C i.e. V_{2} becomes slightly more than V_{1}, the differential voltage V_{d} changes its polarity and op-amp output will suddenly switch to a negative saturation i.e. $-\mathrm{V}_{\text {sat }}$.
- Due to this sudden changeover voltage V_{1} also becomes negative as $\mathrm{V}_{1}=\frac{R_{1}}{R_{1}+R_{2}} \times-\mathrm{V}_{\text {sat }}$ Hence, $\mathrm{V}_{1}=-\beta . \mathrm{V}_{\text {sat }}$
- The capacitor C starts discharging through R and the output stage of the opamp.
- As soon as V_{c} becomes slightly more negative than V_{1}, the differential voltage polarity will be at $\mathrm{t}=\mathrm{t}_{2}$ reversed and the op-amp output will suddenly switch to a positive saturation i.e. $+\mathrm{V}_{\text {sat }}$.

This process will repeat itself to generate a square waveform at the output of opamp.

B. Triangular wave generator:

A triangular wave generator using op-amp can be obtained by a combination of comparator and integrator as shown

Comparator

Integrator

- At $t=t_{0}$ let the output of comparator be equal to $+V_{\text {sat }}$. Hence the voltage at point A will be clamped to $+\mathrm{V}_{\mathrm{z}}$.
$V_{A}=+V_{Z}$
- Let us assume the integrator output at $\mathrm{t}=\mathrm{t}_{\mathrm{o}}$ is positive equal to $\mathrm{V}_{\mathrm{o}}\left(\mathrm{t}_{\mathrm{o}}\right)=\frac{R_{5}}{R_{1}+R_{2}} \times \mathrm{V}_{2}$
That means the capacitor is charged to this voltage with its right plate positive.
- Due to positive voltage $+\mathrm{V}_{z}$ at point A the capacitor starts charging linearly through the resistors R_{3} and R_{4}. This will charge the left plate of the capacitor towards appositive voltage. Therefore the net voltage
on the capacitor starts
Engineering
- The charging current in the interval time t_{0} to t_{1} is given by $I^{+}=\frac{V_{Z}}{R_{3}+R_{4}}$
- The voltage at non-inverting terminal of the comparator is given by superposition theorem
$V_{3}(\mathrm{t})=\frac{R_{5} \mathrm{Vz}}{\left(R_{1}+R_{2}+R_{5}\right)}+\frac{\left(R_{1}+R_{2}\right) \cdot V_{o}(t)}{\left(R_{1}+R_{2}+R_{5}\right)}$
- At instant $\mathrm{t}=\mathrm{t}_{1}$ the instantaneous voltage at non-inverting terminal of comparator i.e. $\mathrm{V}_{3}(\mathrm{t})$ is given by above equation.
Due to this the voltage at point A will be clamped to $-V_{z}$ and the capacitor will discharge through R_{3} and R_{4}.
- The capacitor voltage now starts becoming positive. The discharging current is given by
$I^{-}=\frac{-V_{Z}}{R_{3}+R_{4}}$
As this current is constant, the voltage on the capacitor i.e. output voltage increases linearly.

b) The circuit given in following figure is similar to that of internal diagram of IC555 with slight modifications in the internal resistance to value 2R. Analyze this circuit and draw the waveforms at output terminal $V_{\text {out }}$ and across the capacitor C. Comment on the duty cycle of output waveform when i) R_{A} is less than $\left.R_{B} i i\right) R_{A}$ is equal to R_{B}, and iii) R_{A} is greater than R_{B}.

SOLUTION:

The above diagram represents IC 555 connected to R_{A}, R_{B} and C so as to form an astable multivibrator.

The internal resistance of IC 555 is generally $5 \mathrm{k} \Omega$, but in the above case it is 2 R .
Since all the resistors have same value i.e. 2 R the voltage drop across both the comparators would still be the same i.e. $1 / 3 \mathrm{~V}$ cc and $2 / 3 \mathrm{~V} c c$.

Hence, there would be no change in output waveform of the above given astable multvibrator irrespective of change in internal resistance.

The output waveform Vout and waveform across capacitor C is given as

Duty cycle of above circuit can be obtained as follows:

Duty cycle of astable multivibrator is given as follows
$\mathrm{D} \%=\frac{0.69\left(R_{A}+R_{B}\right) C}{0.69\left(R_{A}+2 R_{B}\right) C} \times 100$
Hence, $\mathrm{D} \%=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \times 100$
i) $R_{A}<R_{B}$

On substituting some random values for R_{A} and R_{B} such that $R_{A}<R_{B}$ in equation 1
For example a) let, $\mathrm{R}_{\mathrm{A}}=2 \Omega, \mathrm{R}_{\mathrm{B}}=2.1 \Omega$

$$
\text { Then } \mathrm{D} \%=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \times 100=\frac{(2+2.1)}{(2+2 \times 2.1)} \times 100=66.12 \%
$$

b) let, $R_{A}=2 \Omega, R_{B}=1000 \Omega$

$$
\text { Then } \mathrm{D} \%=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \times 100=\frac{(2+1000)}{(2+2 \times 1000)} \times 100=50.04 \%
$$

Hence value of D will lie between 50% and 66.66%.
ii) $R_{A}=R_{B}$

If value of R_{A} is equal to $R_{B}, D \%=\frac{\left(R_{B}+R_{B}\right)}{\left(R_{B}+2 R_{B}\right)} \times 100=\frac{2}{3} \times 100=66.66 \%$
Hence when $R_{A}=R_{B}$ duty cycle is 66%.
iii) $R_{A}>R_{B}$

On substituting some random values for R_{A} and R_{B} such that $R_{B}<R_{A}$ in equation 1
For example a) let, $\mathrm{R}_{\mathrm{A}}=2.1 \Omega, \mathrm{R}_{\mathrm{B}}=2 \Omega$

$$
\text { Then } \mathrm{D} \%=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \times 100=\frac{(2.1+2)}{(2.1+2 \times 2)} \times 100=67.21 \%
$$

b) let, $R_{A}=1000 \Omega, R_{B}=2 \Omega$

$$
\text { Then } \mathrm{D} \%=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \times 100=\frac{(1000+2)}{(1000+\times 2)} \times 100=99.80 \%
$$

Hence value of D will lie between 66.66% and 100%.

Q.4.

a) Design a second order Butterworth high pass filter for cut-off frequency of 1 $\mathbf{k H z}$ and pass-band gain of $A_{F}=2$.

SOLUTION:

Data: $\mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz}=10^{3} \mathrm{~Hz}$
Pass-band gain $A_{F}=2$
Let us assume that $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}=0.01 \mu \mathrm{~F}$
Step 1: Calculate value of R
$\mathrm{R}=\frac{1}{2 \pi f_{o} C}=\frac{1}{2 \times \pi \times 10^{3} \times 0.01 \times 10^{-6}}$

$$
\mathrm{R}=15.91 \mathrm{k} \Omega
$$

Step 2: Calculate R_{F} and R_{1}
$A_{F}=1+\frac{R_{F}}{R_{1}}$
$2=1+\frac{R_{F}}{R_{1}}$
$\frac{R_{F}}{R_{1}}=1$
Let $\mathrm{R}_{1}=10 \mathrm{k} \Omega$
Hence $\mathrm{R}_{\mathrm{F}}=10 \mathrm{k} \Omega$
Therefore, the components value are as follows

$$
\begin{aligned}
& \mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}=15.91 \mathrm{k} \Omega \\
& \mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}=0.01 \mu \mathrm{~F}
\end{aligned}
$$

Step 3: Circuit diagram

b) With a neat circuit derive an expression for the output of an instrumentation amplifier.

SOLUTION:

An instrumentation amplifier can be implemented using 3 op-amps as shown in the figure below.

Consider 3 op-amps A1, A2 and A3 where A1 and A2 act as non-inverting amplifier such that their inverting terminal (-) is connected to resistor R2 instead of ground.

The input impedance of all the op-amps (A1, A2 and A3) is assumed to be infinite, the currents flowing would be zero. Hence the current flowing through the resistors R1, R2 and R3 is same i.e. 'I'.

Using the concept of virtual short we can obtain the voltages at nodes A and B as follows

$$
V_{A}=V_{2} \text { and } V_{B}=V_{1}
$$

Hence the expression for current I is, $\mathrm{I}=\frac{V_{A}-V_{B}}{R_{2}}=\frac{V_{2}-V_{1}}{R_{2}}$

The output voltage of op-amp 2 (A2) is given by
$V_{02}=V_{A}+R_{1}=V_{2}+I_{1}$

$$
=V_{2}+\left(\frac{V_{2}-V_{1}}{R_{2}}\right) R_{1}
$$

The output voltage of OP-AMP1 is given by

$$
\begin{aligned}
V_{01} & =\mathrm{V}_{B}-I \mathrm{R}_{1} \\
& =\mathrm{V}_{1}-I \mathrm{R}_{1} \\
& =\mathrm{V}_{1}-\frac{V 2-V 1}{R 2} \times \mathrm{R}_{1} \\
& =\frac{V 1 R 2-V 2 R 1-V 1 R 1}{R 2} \\
& =\frac{(R 1+R 2) V 1-R 1 V 2}{R 2}
\end{aligned}
$$

Hence the output of the first stage is given by

$$
\begin{aligned}
\mathrm{V}_{02}-\mathrm{V}_{01} & =\frac{(R 1+R 2) V 2-R 1 V 1}{R 2}-\frac{(R 1+R 2) V 1-R 1 V 2}{R 2} \\
& =\frac{(R 1+R 2)(V 2-V 1)+R 1(V 2-V 1)}{R 2} \\
& =\frac{(2 R 1+R 2)(V 2-V 1)}{R 1} \\
\mathrm{~V}_{02}-\mathrm{V}_{01} & =\left[1+\frac{2 R 1}{R 2}\right](V 2-V 1)
\end{aligned}
$$

Therefore, the gain of the first state is given by :

$$
\mathrm{A}_{\mathrm{V} 1}=\frac{(\mathrm{V} 02-\mathrm{V} 01)}{(V 2-V 1)}=1+\frac{2 R 1}{R 2}
$$

The second stage is a difference amplifier with a gain of

$$
\mathrm{A}_{\mathrm{V} 2}=\frac{R 4}{R 3}
$$

Therefore, the overall gain A_{v} of the three OP-AMP instrumentation amplifier is given by,

$$
\begin{aligned}
A_{v} & =A_{V_{1}} \times A_{V 2} \\
\therefore \quad A_{v} & =\left[1+\frac{2 R 1}{R 2}\right]_{X} \times \frac{R 4}{R 3}
\end{aligned}
$$

Hence by using a variable resistor R_{2} the overall gain can be easily and linearly varied.

The output voltage is then given by,

$$
V_{0}=A_{v} \times\left(V_{1}-V_{2}\right)
$$

The triple OP-AMP instrumentation amplifier is available in IC form. For example, ICAD522 or INA 101. These devices will contain all the components except the variable resistance R_{2} shown in the figure above.

Q.5.

a) With neat circuit explain $R / 2 R$ ladder digital to analog converter.

SOLUTION:

1. The circuit diagram for R-2R ladder DAC is as shown in figure below

2. Unlike others wide range of resistors are not necessary to design a R-2R ladder DAC. Only two resistors R and $2 R$ are needed hence the name.
3. This method is suitable for the realization of IC where the value of R can be anywhere between $2.5 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ but should not be less than $2.5 \mathrm{k} \Omega$.

Resistors in parallel $2 R \| 2 R=R$

FIG 1

Resistors in series $R+R=2 R$

$$
\Rightarrow
$$

Resistor in parallel $2 R \| 2 R=R$

Resistors in series $R+R=2 R$

FIG 2

$-V_{R} / 4 \quad$ Resistors in parallel

$$
2 \mathrm{R} \| \mathrm{R}=2 \mathrm{R} / 3
$$

ground
FIG 3

Operation of R-2R ladder:

1. The number of digits per binary is assumed to be 3(i.e. $n=3$). The switch positions indicate that the binary word $\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3}=100$.
2. The original circuit can now be simplified as shown in Fig. 1 and Fig.2. Fig. 1 gets further simplified into equivalent circuit as shown in fig.2.
3. The equivalent resistance to the left of node " B " in fig. 1 is only $2 R$ and node " A " is virtual ground potential.
4. The simplified final equivalent circuit is as shown in figure 3. In figure 3 as 2 resistors $2 R$ and R are connected parallel to produce $2 R / 3$.
5. Voltage at node " B " is given as
$\mathrm{V}_{\mathrm{B}}=\frac{\left(\frac{2 R}{3}\right)}{2 R+\left(\frac{2 R}{3}\right)} \times\left(-V_{R}\right)=-\mathrm{V}_{\mathrm{R}} / 4$
6. Hence the output voltage is given by
$\mathrm{V}_{\mathrm{o}}=-\frac{R_{f}}{R_{1}} \times V_{\text {in }}=\frac{-2 R}{R} \times \frac{-V_{R}}{4}=\frac{V_{R}}{2}=\frac{V_{F S}}{2}$
Thus for binary input 100 the analog output produced is $\mathrm{V}_{\mathrm{R}} / 2$.
7. Similarly analog output for other values of input digital value can be obtained.

d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	Analog Output Voltage
0	0	0	0
0	0	1	$\mathrm{~V}_{R} / 8$
0	1	0	$2 \mathrm{~V}_{R} / 8$
0	1	1	$3 \mathrm{~V}_{\mathrm{R}} / 8$
1	0	0	$4 \mathrm{~V}_{\mathrm{R}} / 8$
1	0	1	$5 \mathrm{~V}_{R} / 8$
1	1	0	$6 \mathrm{~V}_{R} / 8$
1	1	1	$7 \mathrm{~V}_{\mathrm{R}} / 8$

Advantages of R-2R ladder DAC:

- Because we need resistors of only two values i.e. R and $2 R$, it os easier to build this circuit accurately.
- We can increase the number of input bits by just adding more
sections of same $R / 2 R$ values.
- The equivalent resistance to the right of each labelled node (A, B, C, \ldots.) will be equal to $2 R$. Hence current flowing downwards, away from each node is equal to the current flowing towards right.
- Due to small resistance range required, the $R-2 R$ ladder can be fabricated monolithically, with a high accuracy and stability.
b) With the help of a functional block diagram explain the working of voltage regulator LM317 to give an output voltage variable from 6 V to 12 V to handle maximum load current of 500 mA .

SOLUTION:

1. Functional block diagram of positive adjustable voltage regulator LM 317 is as shown below

2. The functional block diagram above shows that LM 317 is a series regulator and a Darlington pair acts as a series pass element.
3. The output voltage is compared with the internally generated voltage reference to produce an error voltage which drives the Darlington transistor to regulate the output voltage.
4. RLIMit is an internal sensing resistance. The voltage across it is proportional to load current. This voltage is applied to the internal protection circuitry.
5. If the load current exceeds beyond its maximum value, the Darlington pair will be automatically turned off to protect the IC.
6. LM 317 is monolithic IC voltage regulator with an adjustable output voltage which can supply more than 1.5 A current to the load. Its output voltage is adjustable over a range of 1.2 V to 37 V .
7. It employs the internal current limiting and thermal shutdown and safe area compensation.

Data: $\mathrm{V}_{\mathrm{o}}=6 \mathrm{~V}$ to 12 V

$$
\mathrm{I}_{\mathrm{L}}(\max)=500 \mathrm{~mA}
$$

Let us assume maximum value of $I_{A D J}=100 \mu \mathrm{~A}$ and let $\mathrm{R}_{1}=240 \Omega$.

1. Calculate minimum and maximum values of R_{2}
$\mathrm{V}_{\mathrm{o}}=1.25\left(1+\frac{R_{2}}{R_{1}}\right)+I_{A D J} R_{2}$
$\mathrm{V}_{\mathrm{o}}=1.25\left(1+\frac{R_{2}}{240}\right)+100 \times 10^{-6} \times R_{2}$
For $V_{0}=6 \mathrm{~V}$ i.e. minimum the corresponding value of R_{2} will be $R_{2 \text { min }}$
$\therefore 6=1.25\left(1+\frac{R_{2}}{240}\right)+10^{-4} \times R_{2}$

$$
\mathrm{R}_{2 \text { min }}=894.48 \Omega
$$

For $V_{0}=12 \mathrm{~V}$, value of $R_{2 \text { max }}$ will be
$\therefore 12=1.25\left(1+\frac{R_{2}}{240}\right)+10^{-4} \times R_{2}$

$$
R_{2 \max }=2025.24 \Omega
$$

Thus we want R_{2} to vary from 894.48Ω to 2025.24Ω. Hence we choose R_{2} to be a series combination of a fixed resistor of 680Ω and a potentiometer of $1 \mathrm{k} \Omega$ value.
2. To obtain 500 mA , we should use TO-3 package with 20 W power consumption rating.
3. Filter capacitors:

We assume that the regulator is close to the unregulated input supply. Hence the input capacitor C_{i} is not to be used. But for better ripple rejection use capacitor $\mathrm{C}_{2}=10 \mu \mathrm{~F}$ between adjustment terminal and ground. The output capacitor $\mathrm{C}_{0}=1 \mu \mathrm{~F}$ is also being used.
4. Protective diodes:

As the output voltage is less than 25 V and capacitors are smaller than $25 \mu \mathrm{~F}$, it is not necessary to use the protective diodes.

The minimum voltage drop across LM 317 is 3 V . Hence the input voltage $\mathrm{V}_{\text {in }} \geq 13 \mathrm{~V}$. Hence the complete designed Voltage regulator is as shown below:

Q.6. Short notes on: (Attempt any four)

a) Effect of swamping resistor.

SOLUTION:

Swamping resistor are the resistors used to increase the input resistance of a differential amplifier connected in series to transistor and denoted by RE'.

Effects of Swamping resistor are as follows:

1. The Q point gets shifted and needs to be readjusted.
2. The differential gain reduces substantially.
3. There is a considerable increase in the input resistance.
4. They minimize the effect of change in transistor parameters (e.g. h-parameters) due to temperature, on the differential gain.
5. They also increase the linearity range of the differential amplifiers.
b) Current fold-back protection circuit in voltage regulator.

SOLUTION:

The circuit above shows a simplified circuit schematic of a discrete voltage regulator with foldback current limiting technique, which actually decreases the output current while operating in overload conditions.

The advantage of foldback current limiting is that it reduces the power dissipation taking place in the series pass transistor Q_{1} under the short circuit condition as compared to power dissipation taking place in short circuit current protection.

As seen in the schematic above R_{3} and R_{4} are added to the short circuit protection. Transfer characteristics of foldback current limiting circuit is as shown below

c) Voltage to current converter

SOLUTION:

1. A voltage to current converter accepts the input in voltage form i.e. $\mathrm{V}_{\text {in }}$ and produces output in the form of current i.e. Io. The output current is proportional to input voltage.
2. The voltage to current converter can be classified into two categories depending upon the position of the load.

- V to I converter with floating load.
- V to I converter with grounded load.

3. V to I converter with floating load:

Applying KVL to input loop $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{f}}$
But since the open loop gain of op-amp is very large, $\mathrm{V}_{\mathrm{d}}=0$

Hence, $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{F}}$
But, $\mathrm{V}_{\text {in }}=\mathrm{R}_{1} \times \mathrm{I}_{0} \ldots\left(\right.$ As $\left.\mathrm{I}_{\mathrm{B}} \sim 0\right)$
Therefore, $\mathrm{I}_{0}=\frac{V_{\text {in }}}{R_{1}}$
4. V to I converter with grounded load

Applying $K C L$ at V_{1} we get $l_{L}=l_{1}+I_{2}$
Where, $\mathrm{I}_{1}=\frac{V_{\text {in }}-V_{1}}{R}$ and $\mathrm{I}_{2}=\frac{V_{o}-V_{1}}{R}$
Putting this in above equation
$\mathrm{V}_{1}=\frac{V_{\text {in }}+V_{o}-I_{L} R}{2}$
$A_{V F}=2$ hence, $V_{0}=2 V_{\text {in }}$
Therefore $\mathrm{I}_{\mathrm{L}}=\frac{V_{\text {in }}}{R}$
d) Peak detector circuit

SOLUTION:

1. Peak detector is used to detect and hold the peak value of the input signal. Output of this circuit will follow the peak value of the input signal and store the maximum value infinitely.
2. The two types of Peak detectors are as follows:

Positive peak detector

Negative peak detector
3. Positive peak detector:

- Following circuit shows a positive peak detector using op-amp

- The op-amp is used as voltage follower. Hence the gain of the circuit is 1.
- The diode D_{1} will be forward biased only in positive half cycle of the input, hence this circuit is sensitive only to positive input voltages.
- D_{2} will not allow any negative voltage to go ahead. It will clamp negative output voltage to -0.7 volts (practical diode) or OV (ideal diode).
- The diodes D1 and D2 are assumed to be ideal and the output voltage V_{0} is nothing but the output voltage across the capacitor i.e. $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{c}}$.
- This circuit can work in two modes: track mode and hold mde.

4. Negative peak detector:

- Following circuit shows a negative peak detector using op-amp

OUR CENTERS :

- By reversing the direction of the diodes the same circuit will operate as a negative peak voltage detector.
e) Working of PLL IC 565

SOLUTION:

1. PLL IC 565 is a 14 pin DIP and 10 pin metal can package. Pin configuration of 565 is as shown below

2. Functional block diagram of IC 565 is as shown below

Fig. 2.125 Block diagram of IC 565 PLL

OUR CENTERS :
3. The free running frequency of VCO (i.e. when inputs 2 and 3 are grounded) is given by
$f_{o}=\frac{0.3}{R_{T} C_{T}} \mathrm{~Hz}$
Where R_{T} and C_{T} are externally connected components to pin 8 or pin 9 respectively as shown in functional block diagram.

This externally connected R_{T} can have a value between $2 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$ whereas C_{T} can have any value.
4. To compare f_{i} and f_{o} pin 4 and pin 5 is connected externally.
5. The $3.6 \mathrm{k} \Omega$ external resistor along with capacitor C connected between pin 7 and pin 10 , such that value of this capacitor C should be sufficiently large to minimize variation in output at pin 7.
6. The 565 PLL is capable of locking to and tracking an input signal over $\pm 60 \%$ bandwidth with respect to f_{0} (center frequency).
7. The lock range f_{L} of the PLL is given by

Lock range: $\quad \Delta \mathrm{f}_{\mathrm{L}}= \pm \frac{8 f_{o}}{V} \mathrm{~Hz}$
Where $\quad f_{0}=$ free running frequency of VCO in Hz

$$
\mathrm{V}=(+\mathrm{V})-(-\mathrm{V}) \text { volts. }
$$

8. The expression for the capture range is given by:

Capture range : $\Delta f_{c}= \pm\left(\frac{\Delta f_{l}}{(2 \pi)(3.6) \times 10^{3} \times C}\right)^{1 / 2}$
Where C is expressed in farads.

